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ABSTRACT Acrylate produced from dimethylsulphoniopropionate (DMSP) by Phaeocystls has been 
claimed to inhib~t  bactenal growth However, the concentrations of acrylate measured In seawater 
dunng Phaeocystls blooms are not high enough to expect i n h ~ b i t ~ o n  of bactenal growth In this study, 
the total acrylate m Phaeocyshs cultures free from bacteria was measured The concentration found m 
the exponenbal phase of growth was similar (0  1 to 1 0  PM) to earher field reports, but the amount 
found in the stationary phase of growth was much higher (1 to 4 pM) Acrylate in cultures, as well as in 
field samples, was found to be located in the mucous layer of the colony 'Microscale' concentrations in 
that layer were more than 1000-fold higher (1 3 to 6 5 mlvl) than the total concentration found in the 
unfractionated culture Such h ~ g h  concentrations could have an  antimicrobial effect However, acrylate 
appears to be adsorbed to the mucus and may be inaccessible to bactena including those that consume 
acrylate As soon as the colonies started to decay, acrylate was released ~ n t o  the surrounding envlron- 
ment, and since it is not detected In bloom samples, ~t is apparently consumed by bactena 
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INTRODUCTION 

Phaeocystis (Prymnesiophyceae) is a colony-forming 
microalga with a world-wide distribution and is well 
known for its massive blooms (Lancelot et  al. 1987). 
During such blooms most of the cells are present in the 
palmelloid phase of the life cycle during which they 
are organised in colonles that consist of cells embed- 
ded in a transparent mucous matrix (Rousseau et al. 
1990). Young and healthy Phaeocystis colonies are  
remarkably free of bacteria, and acrylate production 
by this alga has been suggested to be the reason for 
this phenomenon (Davidson & Marchant 1987, Verity 
et al. 1988, van Boekel et  al. 1992). In early field 
studies, Sieburth (1960), and later Guillard and Helle- 
bust (19?1), reported on the production of acrylate by 
Phaeocystis, causing stenle guts in penguins. More- 
over several authors have suggested that acrylate acts 
as a n  antibacterial defence strategy during a n  algal 
bloom (Sieburth 1959, 1961, Davidson & Marchant 

1987, Venty et  al. 1988). However, close coupling be- 
tween bactenal activity (thymidine incorporation, exo- 
proteolytic activity and direct substrate utilisation) and 
primary production of Phaeocystis was found (Lancelot 
& Billen 1984, Billen & Fontigny 1987). Also a micro- 
scopy study of bacteria revealed an  increase in bac- 
terial abundance and cell size during the initial phases 
of the bloom (Putt et  al. 1994). Thus, the antimicrobial 
effect of acrylate in the marine environment remains 
under debate. 

Acrylate in the marine environment is mainly 
derived from the degradation of dimethylsulphonio- 
propionate (DMSP), which serves as a n  osmolyte (Kirst 
1989) and possibly as a cryoprotectant (Kirst 1996) of 
marine algae. Phaeocystis produces large amounts of 
intracellular DMSP (Keller et  al. 1989, Keller 1991, 
Stefels & van Boekel 1993), and  has a n  extracellularly 
located, membrane bound DMSP-lyase which cleaves 
DMSP into equirnolar amounts of acrylate and di- 
methyl sulphide (DMS) (Stefels & Dijkhuizen 1996). 

Acrylate concentrations from 100 pM to 532 mM are 
inhibitory for a range of different bacteria depending 
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on the pH used (Sieburth 1960, Slezak et al. 1994). 
Total acrylate concentrations in the open ocean, how- 
ever, only appear to be in the nM range (Gibson et al. 
1996) but may reach values as high as 1.21 pM (Gibson 
et al. 1996) and 0.51 to 0.7 pM for Phaeocystis blooms 
(Yang et al. 1994, Osinga et al. 1996). Thus, the maxi- 
mum total concentrations of acrylate measured in the 
marine environment are far too low to expect inhibition 
of bacteria. Hence, Slezak et al. (1994) proposed that 
inhibition by acrylate could only play a role under the 
specific condition of phytoplankton aggregate forma- 
tion, e.g. in marine snow or colonies, where acrylate 
can be enriched more than 1000-fold compared to the 
surrounding seawater. 

Recently van Rijssel et al. (1997) showed that the 
mucus in Phaeocystis colonies is not evenly distributed 
over the whole colony, but is concentrated in a thin 
7 pm thick outer layer of the colony in which the algal 
cells are embedded. If the acrylate produced is located 
in this thin layer of mucus, it could be that concentra- 
tions 'on a microscale' are high enough to potentially 
inhibit growth of marine bacteria, or, as suggested by 
Wolfe et al. (1997), act as an anti-predation agent. The 
purpose of this study was to determine the amount of 
acrylate produced by Phaeocystis, and to elucidate the 
location and possible 'microscale' accumulation of 
acrylate in the mucous layer of the colony. 

MATERIAL AND METHODS 

Algal strains and culturing conditions. Two axenic 
colony-forming Phaeocystis strains that had been pre- 
viously isolated from the Dutch Coastal Zone by L. 
Peperzak (Strain L) and I. Janse (Strain I) were used. 
Both strains make 'globosa' type colonies in which 
cells are randomly located along the periphery of the 
colony (Baumann et al. 1994). The medium used was 
filtered (Whatman GF/D) seawater that had been 
collected near Iceland, and was supplemented with 
additions as described by Admiraal & Werner (1983), 
except for the vitamin solution which was taken from 
Veldhuis & Admiraal (1987). All media components 
were sterilised by autoclaving except for the vitamins, 
which were filter sterilised (0.2 pm). After inocula- 
tion with algae, the cultures were incubated on a 
rolling device (8 rpm) at l l °C ,  at a photon flux density 
of 40 pm01 m-2 S-' (measured with a cosine collector), 
with a day:night cycle of 14:lO h. Stock cultures were 
kept at 4°C. 

Field samples of algae were taken during the spring 
bloom of Phaeocystis in 1997. During this period, 
surface water samples were taken with a bucket in the 
Marsdiep off Texel, The Netherlands. The samples 
were stored cold (4°C) and analysed the same day. 

Enumeration of cells. Algal cells were counted with 
an inverted microscope (Zeiss), using the Utermohl 
sedimentation technique (Utermohl 1958) after fixation 
with acid Lug01 solution. Possible bacterial contamina- 
tion of the axenic algal strains was checked microscopi- 
cally on a regular basis. The samples were filtered 
through a 0.2 pm nucleopore filter (Hobbie et al. 1977). 
Filters were examined with an epifluorescence micro- 
scope after staining with Hoechst dye no. 33258 (Paul 
1982). No bacterial contamination was detected during 
the experiments with axenic cultures. 

Acrylate and DMSP analyses. Phosphoric acid (1 % 
V/V) was added to the samples used for acrylate deter- 
mination~ immediately after they were taken. This 
lowers the pH to 1 which was sufficient to inactivate 
the DMSP-lyase present in the culture. The samples 
were then vigorously mixed to homogenise the acry- 
late and subsamples were taken and frozen at -20°C 
until analysis. For DMSP analyses, 1 m1 samples were 
supplemented with 100 p1 10 M NaOH, incubated for 
24 h at 4"C, neutralised with 100 p1 10 M HCl, acidified 
with phosphoric acid (1% v/v), and stored at -20°C. 
After thawing and homogenising, the samples were 
centrifuged (10000 X g, 5 rnin) and the supernatant 
was used for analysis. Analyses were performed on a 
Pharmacia HPLC system equipped with a Econosil C18 
5U column (Alltech) with MilliQ water containing 7.5 % 
acetonitrile and 1 % phosphoric acid as the eluent at a 
flow rate of 1.0 m1 min-l. Acrylate was quantified spec- 
trophotometrically at 210 nm. Sodium-acrylate (Aldrich 
Chemicals) was used as a standard. Data were ana- 
lysed using the EZChrom Data system (Pharmacia). 

Acrylate production. The growth of Strain I was fol- 
lowed by determining the cell numbers, acrylate and 
DMSP in samples of the total culture and on the filtrate 
of GF/F filtered samples (Whatman filters, precom- 
busted for 3 h at 450°C). Duplicate samples were 
analysed. To avoid damage of Phaeocystis cells, only 
gravity force was used for filtration. The DMSP con- 
centration of various fractions were calculated in the 
following way: 

Synthesised DMSP: 
[DMSP]synth = [DMSP]total 

Dissolved DMSP: 
[DMsPld~ss = [DMSPIfiltrate - 1acr~late)fiIlrate 

Particulate DMSP: 
lDMSPlpart = [DMSPlto~~-lacr~lateltota~-IDMSPJ, 

Acrylate location. Where in particulate fraction: 
During the exponential phase of the growth, colonies 
of one size (r = 1 mm) were selected from cultures of 
Strain I and transferred into tubes. Samples without 
colonies from the original culture were added to obtain 
an equal volume in each tube. Colony density in the 
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tubes varied from 0 to 20 colonies ml-l. Samples for 
acrylate analyses were taken after vigorous mixing. 

Where in colonies: Colonies were harvested at vari- 
ous times during the exponential growth of both axenic 
strains and from a bloom sample taken in the field. 
Samples were transferred to a petri dish with a trans- 
parent ruler underneath and each colony was mea- 
sured at 40x magnification. Colonies, representing dif- 
ferent size classes, were removed using a pipette and 
transferred into test tubes. Only spherical colonies 
were selected in order to be able to calculate the sur- 
face area (4nr2) and the volume (4/3 nr3) from the mea- 
sured diameter (d = 2r). The number of colonies per 
tube ranged from 2 to 82 depending on the size class 
and their abundance in the original sample. Tubes 
were filled to a known volume (2 to 5 ml) with a sub- 
sample without colonies. After vigorous mixing of the 
tubes, subsamples were taken for acrylate analyses 
and algal cell counts. A subsample without colonies 
served as a blank. 

To determine whether acrylate was related to the 
volume or surface of colonies, the logarithm of the 
dependent variable (acrylate) was plotted against the 
logarithm of the colony volume (cf. van Rijssel et al. 
1997). The equation describing this relationship is: 

wherein a is the slope of the line and C a constant. The 
value a is 2/3 in the case of a surface related variable 
and 1 in the case of a volume related variable. 

RESULTS 

Production of acrylate 

The production of acrylate was followed during 
batch cultivation of an axenic colony-forming strain of 
Phaeocystis (Fig. 1A). Total acrylate concentrations 
rose above the detection limit (0.1 pM) on Day 6, and 
continued to increase to 1.0 pM at the onset of the 
stationary phase and to 4.3 pM during the senescent 
phase. This was in contrast to measurements that had 
been taken in the field where the total acrylate con- 
centration detected in the senescent phase of blooms 
quickly dropped to zero (Yang et al. 1994, Osinga et al. 
1996). The non-linear regression curve (r2 = 0.98) of the 
total concentration of acrylate versus time was used to 
calculate acrylate production rates (Fig. lA, B). These 
were 0.6 to 0.8 fmol cell-' d-' in the exponential phase 
of growth (Days 7 to 10), and increased during the 
senescent phase of growth up to 2.8 fmol cell-' d-l 
(Day 15). These results show that the absence of acry- 
late at the end of the bloom is not due to lack of acry- 
late production. 

Time (d) 

Fig. 1. (A) Growth curve of colony forming PhaeocystisStrain I,  
algal cells (O), total acrylate concentration (o), non-linear 
regression curve for the total acrylate concentration (-) (r2 = 
0.98) (B) Calculated total acrylate production rates ( A ) ,  per- 
centage of total acrylate present in the filtrate (o) (C) Con- 
centration (FM) of particulate DMSP (DMSPp,,), dissolved 
DMSP (DMSP,,), and total acrylate (0) during the growth of 
the axenic colony forming Phaeocystis Strain I. The different 
DMSP values were calculated in the following way: DMSPd,ss 
(0) = [DMSPIfiltrate - [acrylatelt,~,,; DMSPsynth (0) = [DMSPlt,t,~; 

DMSP,,,, (A)  = lDMSPltot,~ - lacr~latel~,,~ - [DMSPIdiss 

The concentration of DMSP was measured to estab- 
lish whether the increased acrylate production rate in 
the stationary phase of growth (Fig. 1B) was caused by 
the increased cellular production of DMSP and subse- 
quent excretion of acrylate, or by lysis of Phaeocystis 
cells. The latter could result in DMSP leakage and sub- 
sequent increased conversion into DMS and acrylate 
by extracellular DMSP-lyase. The rate of total acrylate 
production increased after Day 11 while dissolved 
DMSP decreased, indicating that DMSP*,,, is con- 
verted to DMS and acrylate. The increased concentra- 
tion of DMSPs,,,h at the end of the stationary phase 
indicated that production of DMSP is still continued. 
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These results suggest that the increased acrylate pro- 
duction rate during the stationary phase is due to both 
cellular excretion of acrylate as well as lysis of Phaeo- 
cystis cells. 

Acrylate in colonies 

In the exponential phase of growth, only 12.5% of 
the total acrylate was detected in the filtrate, and this 
increased in the stationary phase to 98% (Day 15) 
(Fig. 1B). This suggests that the acrylate produced dur- 
ing the exponential growth phase was associated with 
either the cells or the colonies. 

To distinguish between the association of acrylate 
with colonies or cells of Phaeocystis, tubes with dif- 
ferent colony densities were obtained by collecting 
colonies from an exponentially growing axenic cul- 
ture of Phaeocystis. Subsequent determination of the 
total acrylate content in each tube revealed (Fig. 2) 
that the amount of acrylate increased as the colony 
density increased, suggesting that the acrylate was 
associated with the colonies and not with single, indi- 
vidual non-colonial cells. This conclusion is important 
for future total acrylate measurements in the field 
during blooms of Phaeocystis because filtration steps 
will result in underestimates of the total acrylate pro- 
duced. 

Location of acrylate 

Double logarithmic plots of acrylate versus the vol- 
ume of colonies of different sizes were determined in 
order to establish whether acrylate is uniformly dis- 

0 5 10 15 20 

Number of colonies per rnl 

Fig. 2. Acrylate concentrations (PM) of samples containing 
different numbers of colonies (r = 1 mm) per m1 from an expo- 
nentially growing Phaeocystis Strain I .  Linear regression line 

y = 0 . 1 2 ~ -  0.08, r2 = 0.96 

tributed throughout the entire colony or only present 
in the mucous layer. Colonies were taken from expo- 
nentially growing cultures of 2 axenic strains of 
Phaeocystis and from a bloom sample from the field. 
They were sorted into different size classes and the 
total acrylate content was determined. The 7 data sets 
obtained (Fig. 3A-C) were subjected to ANCOVA 
tests. The slope of linear regression lines from labora- 
tory cultures and field samples (Fig. 3) were not sig- 
nificantly different from each other (F,,,, = 1.49, p = 

0.226). The slope was 0.55 (F,,,, = 4.01, p < 0.001) 
with a 95% confidence interval ranging from 0.45 to 

Colony volume (pl) 

Fig. 3. Correlation between volume of a colony and amount of 
acrylate in that colony (log acrylate = 0.551og volume + b) in 
different stages of the logarithmic phase for 2 axenic Phaeo- 
cystis strains and a field sample from a Phaeocystis bloom. 
Each point is the average of a number of colonies (Table 1). 
Variation was between 1 and 5%. (A) Axenic Strain L, early 
logarithmic phase, b = 2.29 (A), early mid logarithmic phase, 
b = 2.20 (O),  late mid logarithmic phase, b = 2.02 (U),  end 
logarithmic phase, b = 2.37 (0). (B) Axenic Strain 1, early 
mid logarithmic phase, b = 1 7 0  (O), end logarithmic phase, 

b = 2.22 (0). (C) Field sample, b = 1.63 (0) 
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Table 1 Number of colonies per size class for Strain L, Strain I ,  and the field sample at different times in the exponential phase 
of growth 

Size class Colony volume 
(diameter, mm) (p1 = mm3) 

Number of colonies per size class 
Strain, L" Strain, Strain, LC Strain, Ld Strain, Ib Strain, Id Field 

82 7 2 4 1 23 4 1 6 1 
31 66 4 8 37 19 46 32 
13  39 3 9 39 11 19 24 

2 8 33 33 10 13 
4 30 25 9 5 
4 5 14 3 

6 4 
6 

aEarly logarithmic phase of growth; bearly mid logarithmic phase of growth; 'late mid logarithmic phase of growth; 
dend logarithmic phase of growth 

0.65. Moreover the slopes did not vary with different 
stages of growth, but they did reflect a significant dif- 
ference in level of acrylate per colony (F6,29 = 12.31, 
p < 0.001). Colonies from the laboratory experiments 
contained significantly more acrylate compared to the 
bloom sample except for colonies from Strain I in the 
exponential phase (F1,29 = 4.01, p = 0.621). Moreover 
the slopes were closer to 0.67 than to l ,  so it was con- 
cluded that the acrylate was located at the periphery 
of the colony. 

DISCUSSION 

Our results show that the absence of acrylate at the 
end of Phaeocystis blooms is not due to lack of acrylate 
production. Indeed, the production of acrylate in- 
creased during the stationary phase of growth of 
Phaeocystis due to both cellular excretion of acrylate 
as well as lysis of Phaeocystis cells. Moreover, the data 
show that the acrylate produced in the logarithmic 
phase of growth was associated with the colonies and 
located in the thin mucous layer in which the algal 
cells were embedded. That acrylate is located in the 
mucous layer was concluded from the relationship 
between colony volume and acrylate content (Fig. 3) .  
Acrylate seems to correlate with the surface area of the 
colony and not the volume in both axenic strains and 
field samples. However, the slope of the regression 
line, 0.55 (Eq. l), was less than the theoretically 
expected value of 0.67: 

log acrylate = 0.55 log volume + C 

Previously measured slopes of double-logarithmic plots 
of a number of other variables versus colony volume in 
Phaeocystis were also always lower than the expected 
*/3 for surface-related variables as shown by van Rijssel 
et al. (1997; Eqs. 2 & 3 ) ,  Rousseau et al. (1990; Eq. 4 ) ,  
and Weisse & Scheffel-Moser (1990; Eq. 5): 

log sugar = 0.46 log volume - 0.06 ( 2 )  
log carbon = 0.44 log volume - 0.19 (3) 
log cell number = 0.51 log volume + 3.67 (4) 
log cell number = 0.58 log volume + 3.67 (5)  

Van Rijssel et al. (1997) suggested that the cells 
become distributed more thinly over the surface when 
the size of the colony increases. Therefore the number 
of cells (and thus also the concentration of acrylate, 
sugar, or carbon) per unit of surface area will be lower 
in larger colonies, and consequently slope a of the 
regression line will be less. Indeed, when the num- 
bers of cells per mm2 in colonies of different sizes was 
measured they were found to decrease when the size 
of colonies increased (Fig. 4) .  Therefore, we think it is 
appropriate to conclude that the acrylate in young 
and healthy colonies is correlated with the colony 
surface. 

Colony diameter (mm) 

Fig. 4.  Colony diameter plotted against algal cells per mm2 
of colony surface for 2 strains of Phaeocystis during expo- 
nential growth and a field sample from a Phaeocystis bloom. 
(0) Strain L-early mid logarithmic phase, (U) Strain I-end 

logarithmic phase, (A) field sample 
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Table 2. Calculated 'microscale' acrylate concentrations in 
the mucous layer of Phaeocystis colonies 

Phaeocystis Moment m the Concentration acrylate 
straln logarithmc phase mM (error) 

Field 
Strain L 
Strain L 
Strain L 

Beginning 1.34 (+ 0.37) 
Early 6.52 (* 2.23) 
Early mid 6.07 (* 1.27) 
Late mid 2.81 (+ 0.35) 

S train L End 5.46 (* 0.37) 

Strain I Early mid 1.50 (* 0.07) 
Straln I End 4.21 (k 0.30) 

Concentration of acrylate in the mucous layer 

The colony surface consists of a 7 pm thick mucous 
layer (van Rijssel et al. 1997), and therefore it is reason- 
able to assume that the surface-associated acrylate is 
located in that layer. Data from Fig. 3 were used to 
calculate 'microscale' acrylate concentrations in that 
mucous layer (Table 2). Concentrations varied from 2.8 
to 6.5 mM for Strain L and 1.5 to 4.2 mM for Strain I. 
The acrylate concentration in the bloom sample was 
1.3 mM, similar to the lowest value of the laboratory 
strains. On the basis of our data it cannot be deter- 
mined whether the somewhat lower 'microscale' acry- 
late concentration in the field samples (Table 2) is 
caused by loss of acrylate from the colonies in the field, 
or that acrylate formation in the field is slightly lower 
than in axenic laboratory cultures. Nonetheless the 
'microscale' concentrations in all samples were in the 
mM range and therefore may be high enough to cause 
inhibition of bacterial growth (Sieburth 1960, Slezak et 
al. 1994). 

Acrylate in the field 

In field studies, acrylate is detected in the begin- 
ning of the bloom, but as the bloom reaches the 
senescent phase, acrylate concentrations quickly drop 
to zero (Yang et al. 1994, Osinga et al. 1996). David- 
son & Marchant (1987) have suggested that bacteria 
are able to invade old and senescent colonies because 
acrylate would only be produced in the exponential 
phase of growth. However, data obtained in this study 
using axenic cultures (Fig. 1) showed there was an 
increased rate of acrylate production in the senescent 
phase, and the concentration of acrylate in the 
colonies was much higher than in the surrounding 
medium (Fig. 1B). Bearing in mind that many marine 
bacteria are known to metabolise acrylate (Kiene 
1990, Taylor & Gilchrist 1991, Diaz et al. 1992, Led- 
yard et al. 1993), we suggest that the absence of acry- 
late in the senescent phase of Phaeocystis blooms is 

due to bacterial consumption of acrylate rather than 
lack of its production. 

Maximum concentrations of total acrylate reported 
for Phaeocystis in the field range between 0.51 and 
0.7 pm01 1-' (Yang et al. 1994, Osinga et al. 1996). 
These values are comparable to the total acrylate con- 
centrations measured in the medium of axenic cultures 
during exponential growth of cells in the present study 
(0.1 to 1.0 pm01 1-l). Also the 'microscale' concentration 
of acrylate in the colony mucous layer is practically the 
same for field and axenic laboratory strains. This sug- 
gests that the presence of bacteria in the field has little 
influence on the acrylate concentration found at the 
beginning of the bloom. 

Function of acrylate 

Sieburth (1968) proposed that products excreted by 
algae create a concentration gradient outside the cell, 
as was also suggested by Azam et al. (1983). Our data 
indicate that such a gradient could exist outwards from 
the mucous layer of Phaeocystis colonies in the field. 
The high concentrations of acrylate might inhibit bac- 
teria in the vicinity of colonies, because mM concen- 
trations of acrylate can be enough to inhibit bacterial 
growth (Sieburth 1960, Slezak et al. 1994). 

Besides inhibiting bacteria, acrylate could also be 
a nuisance to other organisms such as predators. 
Recently Wolfe et al. (1997) found that strains of Emil- 
iania huxleyi with low DMSP-lyase were preferred by 
predators over strains with high DMSP-lyase. They 
suggested that increased levels of acrylate, formed 
from the internal DMSP pool by DMSP-lyase in E. hux- 
leyi, was responsible. Their video analysis suggests 
that the protozoan Oxyrrhis marina reacts to increas- 
ing acrylate concentrations with an increased rate of 
change in direction. Acrylate located in the mucous 
layer of Phaeocystis could act in a similar way as an 
anti-predation agent. It is known that healthy colonies 
are not grazed upon (Estep et al. 1990), and that other 
algae are preferred over Phaeocystis (Hansen 1995). 

As to interactions with bacteria one cannot exclude 
the possibility that acrylate is inaccessible to these 
microorganisms because it may be ionically bound 
inside the mucus. Phaeocystis mucus consists of more 
than 8 different sugars and some negatively charged 
uronic acids (Janse et al. 1996) which are ionically 
linked by positively charged ions such as manganese 
and calcium (van Boekel et al. 1992). Thus the nega- 
tively charged acrylate could also be ionical.ly bound to 
the mucus via such salt bridges. If this is the case, then 
acrylate is nelther harmful nor accessible as a growth 
substrate during the exponential growth of Phaeocystis 
colonies because it is biologically unavailable. 
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Hence, acrylate could act as a defence mechanism 
against bacteria or, at a higher trophic level, as protec- 
tion against predation. Alternatively, it could also be 
rather harmless as a delayed carbon source for bac- 
teria. To substantiate these possibilities, further studies 
with defined cocultures are in progress. 
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